Course Objectives:

– To familiarize you with the basics of laser hazards and their control.
– Following this training you are encouraged to talk to your supervisor or safety officer.
– Also, if you work with lasers or come into contact with lasers, talk with the operators and review manufacturers information.
Laser Safety Awareness

Introduction: Laser Safety

• Welcome
 – Laser applications, hazards, controls and other safety practices.
 – Estimated Length: 15 minutes
 – Audience: Foremen, Supervisors, Workers
 – References: 29 CFR 1926.54
Laser Safety Awareness

What Does Laser Stand For?

• Light
• Amplification by
• Stimulated
• Emission of
• Radiation
Laser Safety Awareness

Laser Applications
• Lasers are used in:
 – **Scientific research**
 – **Chemistry**
 – **Medicine** (eye and other surgeries)
 – **Industry** (cutting and welding)
 – **Commercial** (supermarket checkout scanners)
 – **Military** (angles and distances)
 – **Construction** (angles, boundaries and elevations)
Laser Basics

- Laser light is different than ordinary light.
- Laser light is:
 - Monochromatic
 - Directional
 - Coherent
- Laser light can be a hazard because it can focus a high-energy light beam onto a small area.
Characteristics

- **Laser Design Elements**
 - *Lasing Medium* (gas, liquid, solid, or semiconductor)
 - *Excitation Mechanism* (power supply, flashlamp, energy from another laser.
 - *Feedback Mechanism* (reflect light - mirrors)
 - *Output Mechanism* (allows light to leave the lasing medium)
Laser Types

• Types of lasers:
• Lasing Medium
 • Gas, liquid, solid state, semiconductor, or dye
 – Duration of laser light emission:
 • Continuous Wave
 • Pulsed
 • Q-switched
Laser Hazards

- The dangers of lasers can be divided into four major categories:
- (1) Eye hazards (retinal or corneal burns)
- (2) Skin hazards (burns)
- (3) Electrical hazards from high voltage equipment
- (4) Fire hazards
Laser Damage

- Causes:
 - Thermal or heating effects caused by the intense laser beam power.
 - Acoustical effects caused by the minute shockwaves in tissue which causes the tissues to tear.
 - Photochemical effects caused by the laser light making changes in the chemistry of the cells.
Eye Hazards

• Characteristics:
 • The eye is extremely sensitive to laser light
 – Laser eye injury can happen quickly and painlessly
 – Magnifying glass effect = retinal burns
Other Hazards

- Characteristics:
 - Injury to the skin because of burns, especially with higher power lasers.
 - Electric shock and electrocution: Most medium and high power lasers operate on 220 or even higher AC voltages.
 - High power laser beams directed onto combustible and flammable materials can cause ignition and fires.
Laser Hazard Classification

• Several agencies and organizations classify lasers.
 – ANSI = American National Standards Institute
 – Federal Laser Product Performance Standard
 – Lasers have different hazard classes based on:
 • Wavelength
 • Power
 • Potential biological effects
Hazards

ANSI Hazard Classifications

- **Class I**: < 1 microWatt, No viewing hazard
- **Class II**: <1 milliWatts, no eyewear required
- **Class III**: 1 - 500 milliWatts, moderate eye hazard
- **Class IV**: >500 milliWatts; skin, eye and fire hazard
Hazard Control

Laser Hazard Control

• Controls:
 – Engineering (Installed by manufacturer before sale)
 – Administrative and Work Practice
 – Personal Protective Equipment (Gloves, eye protection)
Hazard Control

Engineering Controls
- Primary hazard control method
- Design features or devices:
 - Beam housings and shielding
 - Beam shutters
 - Attenuators
 - Remote firing controls
 - Emergency shut off
 - Grounding
- See ANSI specs (Z136.1 - 1993)
Hazard Control

Administrative/Work Practice

• Procedures and information provided to personnel
 – Safety training for operators
 – Standard operating procedures
 – Authorized persons using, maintaining, evaluating the hazard
 – Warning signs and labels
 – Medical surveillance program
Personal Protective Equipment

- Eye protection:
 - Know type of laser and the specific type of eye protection which will filter, absorb and/or reflect the specific wavelength of laser light.
 - Check the manufacturers product information to determine the specific optical density or shade of eye protection.
 - Clothing and gloves should be available and worn if the laser presents a heat or thermal hazard.
Standards and Guidelines

• Workplace safety regulations:
 – OSHA regulates lasers per ANSI standard.
 • Classification of lasers
 • Hazard evaluation of lasers
 • Controls for laser exposures
 • Duties of Laser Safety Officer
 • Non-beam hazards
OSHA Standards - Construction

- Qualifications and operator training
- Required eye protection
- Work practice controls (beam shutters or caps, beam direction)
- Signs and labels
- Laser beam shall not be directed at employees
- Restricted use in adverse weather conditions
- Output labeling
- Specified exposure levels
Conclusion

Safe Laser Work Practices
• Wear protective eyewear.
• Use minimum power for job.
• Reduce laser output with shutter attenuators, if possible.
• Terminate laser beam with beam trap.
• Use diffuse reflective screens, remote viewing systems during alignments, if possible.
• Remove unnecessary objects and personnel from vicinity of laser and beam.
• Keep beam path away from eye level.
• Do Not put any part of your body in the beam path.
Conclusion

Summary

• Lasers:
 – Are an important tool
 – Use focused light
 – Can damage the unprotected eyes and skin

• Only trained and qualified operators are permitted to operate laser equipment using engineering, work practice and personal protective equipment controls.

• Follow company and manufacturer’s safe operating requirements!