EM 385-1-1
15 Sep 08

SECTION 6

HAZARDOUS OR TOXIC AGENTS AND ENVIRONMENTS

06.A GENERAL

06.A.01 Exposure standards.

a. Exposure, through inhalation, ingestion, skin absorption, or physical contact, to any chemical, biological, or physical agent in excess of the acceptable limits specified in the most recently published ACGIH guideline, "Threshold Limit Values and Biological Exposure Indices," or by OSHA, whichever is more stringent, shall be prohibited. For the purpose of this document, the term used for the most stringent standard is the Occupational Exposure Limit (OEL).

b. In case of conflicts between ACGIH and other standards or regulations referenced in this manual, the more stringent shall prevail.

c. The employer shall comply with all applicable standards and regulations to reduce contaminant concentration levels As Low As is Reasonably Achievable (ALARA).

d. Activities where occupational exposure to a chemical or biological agent is possible shall comply with current Department of Army (DA) safety and occupational health requirements for chemical and biological agents.

06.A.02 Hazard evaluation.

a. All operations, materials, and equipment shall be evaluated to determine the presence of hazardous environments or if hazardous or toxic agents could be released into the work environment.
b. AHA and/or PHA shall be used for the evaluation. The analyses shall identify all substances, agents, and environments that present a hazard and recommend hazard control measures. Engineering and administrative controls shall be used to control hazards; in cases where engineering or administrative controls are not feasible, PPE may be used.

c. The analyses shall identify: that it serves as certification of hazard assessment; the workplace and activity evaluated; the name of the person certifying that the evaluation has been performed; and the date of the evaluation.

d. Operations, materials, and equipment involving potential exposure to hazardous or toxic agents or environments shall be evaluated by a qualified industrial hygienist, or other competent person, to formulate a hazard control program. This program must be accepted by the GDA before the start of operations.
> This evaluation shall be performed at least annually for USACE operations.

06.A.03 Testing and monitoring.

a. Approved and calibrated testing devices shall be provided to measure hazardous or toxic agents, and environments. Devices shall be labeled with calibration information (name of individual performing the calibration and date of current calibration). Calibration results shall be logged.

b. Individuals performing testing and monitoring shall be trained in hazards and testing and monitoring procedures. Testing devices shall be used, inspected, and maintained in accordance with the manufacturer’s instructions, a copy of which shall be maintained with the devices.

c. NIOSH or OSHA sampling and analytical methods or other approved sampling and analytical methods shall be used. Laboratories used for analysis shall be accredited by nationally recognized bodies, such as the American Industrial Hygiene Association (AIHA), for the type of analysis performed.
d. Determinations of the concentrations of, and hazards from, hazardous or toxic agents and environments shall be made by a qualified industrial hygienist or other competent person during initial startup and as frequently as necessary to ensure the safety and health of the work environment.

e. Records of testing/monitoring shall be maintained on site and shall be available to the GDA upon request.

06.A.04 The following methods shall be utilized for the control of exposure to hazardous or toxic agents and environments:

a. Substitution, if the substitute process or product is determined to provide the same outcome and to be less of a hazard;

b. Engineering controls (such as local/general ventilation), to limit exposure to hazardous or toxic agents and environments within acceptable limits;

c. Work practice controls, when engineering controls are not feasible or are not sufficient to limit exposure to hazardous or toxic agents and environments within acceptable limits;

d. Appropriate PPE (i.e., respirators, gloves, etc.) and associated programs shall be instituted when engineering, work practice controls or material substitution are not feasible or are not sufficient to limit exposure to hazardous or toxic agents.

06.B HAZARDOUS OR TOXIC AGENTS

06.B.01 Chemical Hazard Communication. A written hazard communication program shall be developed when the use of hazardous or toxic agents (any chemical which is a physical/health hazard) are procured, stored or used at a project site (per 29 CFR 1910.1200). The written hazard communication (hazcom) program shall address the following in project-specific detail:

a. Hazardous or Toxic Agent Inventory. A list of the hazardous or toxic agents with the following information:
(1) **Explanation of how the agents are to be used at the project.**

(2) For emergency response purposes, approximate quantities (e.g., liters, kilograms, gallons, pounds) that will be on site at any given time shall be provided for each material.

(3) A site map will be attached to the inventory showing where inventoried substances are stored.

(4) The inventory and site map will be updated as frequently as necessary to ensure accuracy.

b. **Hazardous or Toxic Agent Labeling.** Procedures for assuring that containers used to store and transport hazardous or toxic agents around the project site are appropriately labeled to communicate the physical and health hazards associated with the agents in the containers.

c. **Material Safety Data Sheet (MSDS) Management.** Procedures to ensure MSDSs are maintained at project site for each agent.

(1) Employees shall review MSDSs for specific safety and health protection procedures.

(2) Applicable information contained in the MSDS shall be incorporated in the AHA/PHAs or MSDS can be attached to the AHA/PHA for activities in which material will be used.

(3) The information will be followed in the use, storage, and disposal of material and selection of hazard control and emergency response measures.

d. **Employee Information and Training.** Procedures to ensure employees are trained initially and periodically when use of hazardous or toxic agents is altered or modified to accommodate changing on-site work procedures. Training shall cover the following topics:
(1) Requirements and use of the hazcom program on the project;

(2) The location of all hazardous or toxic agents at the project;

(3) Identification and recognition of hazardous or toxic agents on the project;

(4) Physical and health hazards of the hazardous or toxic agents pertinent to project activities;

(5) Protective measures employees can implement when working with project-specific hazardous or toxic agents.

06.B.02 When engineering and work practice controls or substitution are either infeasible or insufficient, appropriate PPE and chemical hygiene facilities shall be provided and used for the transportation, use, and storage of hazardous or toxic agents.

a. When irritants or hazardous substances may contact skin or clothing, chemical hygiene facilities and PPE shall be provided. PPE may include suitable gloves, face/eye protection and chemical protective suits.

(1) The qualified industrial hygienist or other competent personnel shall determine the scope and type of protective equipment.

(2) Special attention shall be given to selecting proper chemical protection when working with materials designated with a “skin” notation by OEL. Such materials may produce systemic toxic effects through absorption through unbroken skin. > See Section 5.

b. When eyes or body of any person may be exposed to hazardous or toxic agents, suitable facilities for quick drenching or flushing of the eyes and body shall be provided in the work area for immediate emergency use and shall be no more than
10 (10) seconds from the hazardous material. > See ANSI Z358.1.

(1) Emergency eyewash equipment must be provided where there is the potential for an employee’s eyes to be exposed to corrosives, strong irritants, or toxic chemicals.

(2) The emergency eyewash equipment must irrigate and flush both eyes simultaneously while the operator holds the eyes open.

(3) The emergency eyewash equipment must deliver at least 0.4 gal (1.5 L) of water per minute for fifteen (15) minutes or more (minimum 6 gallons (22.7 L) water).

(4) Personal eyewash equipment may be used to supplement emergency washing facilities. They must not be used as a substitute. Personal eyewash fluids shall be visually inspected monthly to ensure they remain sanitary with no visible sediments.

(5) All plumbed emergency eyewash facilities and hand-held drench hoses shall be activated weekly and inspected annually to ensure that they function correctly and that the quality and quantity of water is satisfactory for emergency washing purposes.

06.B.03 Storage prior to transportation of hazardous chemicals, materials, substances and wastes shall be under the supervision of a qualified person.

a. Transportation, use, and storage of hazardous or toxic agents shall be planned and controlled to prevent contamination of people, animals, food, water, equipment, materials, and environment.

b. All storage of hazardous or toxic agents shall be in accordance with the recommendations of the manufacturer,
OSHA and NFPA requirements and accessible only to authorized personnel.

c. Disposal of surplus or excess hazardous or toxic agents shall occur in a manner that will not contaminate or pollute any water supply, ground water, or streams; and will comply with Federal, State, and local regulations and guidelines.

d. Containers used to hold hazardous or toxic agents should not be used to hold other materials unless they have been managed or cleaned under hazardous waste and Department of Transportation (DOT) regulatory requirements.

e. Every hazardous or toxic agent being transported for disposal shall be transported with a copy of the substance’s MSDS whenever applicable.

f. Persons who prepare shipments of hazardous chemicals, materials, substances and/or wastes that are defined as hazardous material under DOT regulations are required to be DOT trained, certified and issued an appointment letter in accordance with Defense Transportation Regulation 4500.9-R, Chapter 204.

06.B.04 A Process safety management program of highly hazardous chemicals shall be employed in accordance with 29 CFR 1910.119 or 29 CFR 1926.64 whenever a work activity involves:

a. A process that involves a chemical at or above the threshold quantities listed in Appendix A of the above-cited CFRs; or

b. A process that involves a flammable liquid or gas on site in one location in a quantity of 10,000 lb (4,535.9 kg) or more as defined in 29 CFR 1926.59(c), except:

(1) Hydrocarbon fuels used solely for workplace consumption as a fuel if such fuels are not part of a process containing another highly hazardous chemical covered by the standards
cited above; or

(2) Flammable liquids stored in atmospheric tanks or transferred that are kept below their normal boiling point without benefit of chilling or refrigeration.

06.B.05 Lead and Asbestos Hazard Control Activities.

a. General. All projects will be evaluated for the potential to contact asbestos-containing material (ACM) and lead-based paint (LBP).

(1) If the evaluation shows the potential for activities to generate unacceptable occupational exposure to LBP, a written lead compliance plan shall be written. The lead compliance plan shall be in accordance with 29 CFR 1910.1025 and 29 CRF 1926.62.

(2) If the evaluation shows the potential for activities to disturb ACM, an asbestos abatement plan shall be developed. The asbestos abatement plan shall be in accordance with 29 CFR 1910.1001; 29 CFR 1926.1101; and 40 CFR 61, Subpart M.

(3) These plan(s) shall be developed as an appendix to the contract APP or, for USACE operations, the Project Safety Plan. The written plan(s) shall be submitted for acceptance by the GDA before beginning work.

b. Lead Compliance Plan. A lead compliance plan shall describe the procedures to be followed to protect employees from lead hazards while performing lead hazard control activities. The Plan shall address the following:

(1) A description of each work activity in which lead is emitted, to include equipment and materials used, controls in place, crew size, job responsibilities, operating procedures, and maintenance practices, work activity locations and lead-containing components keyed to the project drawings;
(2) Description of means to be used to achieve exposure compliance, including any engineering controls;

(3) Employee exposure assessment procedures to monitor and document employee lead exposure. Exposure monitoring shall include two types:

(a) Initial determination (may be omitted if there is sufficient objective/historical data showing action level compliance according to the requirements); and

(b) Continued exposure monitoring required as a result of initial exposure determinations.

(4) Protective clothing, housekeeping procedures to prevent spread of lead contamination both in and beyond the lead hazard control area, and hygiene facilities and practices to prevent employees from inadvertent ingestion of lead;

(5) Administrative controls to limit employee exposure to lead, including employee rotation schedule to be employed, if engineering controls or PPE fail to eliminate exposures exceeding the PEL;

(6) Medical surveillance procedures to monitor employee exposures and ensure fitness for wearing respiratory protection;

(7) Competent person and employee training required;

(8) Detailed sketches identifying lead hazard control areas, including decontamination areas and facilities, critical barriers, and physical and air distribution boundaries;

(9) Perimeter or other area air monitoring outside or adjacent to the regulated area;

(10) Security required for each lead hazard control area; and
(11) Waste generation, characterization, transportation, and disposal (including recordkeeping).

c. Asbestos Hazard Abatement Plan. An asbestos abatement plan shall describe procedures to be followed to protect employees from asbestos hazards while performing work that will disturb ACM. It shall address the following:

(1) A description of each activity where asbestos will be disturbed, to include the OSHA class of work, equipment required, controls to be used, crew size, job responsibilities, maintenance practices, and locations keyed to the project drawings;

(2) Method of notification of other employers at the worksite;

(3) Description of regulated areas, types of containment, decontamination unit plan, and engineering controls;

(4) Air monitoring: personal, environmental, and clearance. Employee exposure assessment procedures shall address monitoring and documenting employee exposures.

(a) An initial determination (may be omitted if there is sufficient objective/historical data showing compliance with the requirements);

(b) Continued exposure monitoring may be required as a result of initial exposure determinations;

(c) Environmental monitoring shall demonstrate the absence of asbestos fiber migration outside the regulated area; and

(d) Clearance monitoring to document that the area has met specified clearance criteria.

(5) PPE, including respirators and clothing;

(6) Housekeeping procedures addressing prevention of spread
of contamination both in and beyond the regulated area;

(7) Hygiene facilities and practices;

(8) Competent person and employee training required;

(9) Medical surveillance, as required, to assess exposure and to monitor employee fitness to perform work tasks while wearing PPE to include respiratory protection devices;

(10) Waste generation, containerization, transportation, and disposal (including recordkeeping); and

(11) Security, fire, and medical emergency response procedures.

06.C HOT SUBSTANCES

06.C.01 Heating devices and melting kettles.

a. Heating devices and melting kettles shall be placed on firm, level, non-combustible foundations and shall be protected against traffic, accidental tipping, or similar hazards and, whenever possible, shall be placed downwind from employees or occupied buildings.

b. A method to contain uncontrolled spills of the heated material, which might be on fire, shall be developed. The placement of a fire retardant tarp under the kettle (or other effective means) shall be used.

c. A minimum of two (2) fire extinguishers, rated not less than 2A:20B:C, shall be available within 25 ft (7.6 m) of the working kettles. > Hot work permits shall be required on Government installations unless otherwise indicated by the GDA.

d. The kettle operator must be trained in the proper operation of the kettle and have knowledge of the material being heated so
as to not allow the material to be heated beyond the allowable temperature. A working thermometer shall be provided and used.

e. Heating devices and melting kettles shall not be left unattended when in use. When the kettle is heating material to the working temperature, the operator must be located on the same level as the kettle, be within eyesight and be within 25 ft (7.6 m) of the kettle. > See 09.J.03.

f. Bituminous-material melting kettles shall be provided with an effective tight fitting lid or hood, and a calibrated thermometer in operating condition.

(1) The temperature shall be maintained 25° below the flash point of the bituminous material.

(2) All melting kettles shall be sized for the job.

(3) The size and weight of the kettle must not exceed the structural capacity of the roof deck.

g. Bituminous-material melting kettles shall not be used or operated inside or within 25 ft (7.6 m) of combustible materials, including propane tanks stored or in use. The lid for the kettle should open away from the building.

h. The liquid propane container(s) used as the heat source shall be kept at least 10 ft (3 m) away from the kettle and shall be placed in an upright and secured position to insure it doesn’t tip over.

i. Kettles shall be located so that means of egress is not restricted and shall be no closer than 10 ft (3 m) of egress path.

06.C.02 Enclosed areas in which hot substances are heated or applied shall be ventilated.
06.C.03 Ladles, equipment, and material shall be moisture-free before being used or placed in heated material.

06.C.04 Flammable liquids with a flash point below 100°F (37.8°C) shall not be used to thin the mixture or to clean equipment.

06.C.05 Transporting and handling hot substances.

a. Runways or passageways, clear of obstructions, shall be provided for all persons carrying hot substances.

b. Hot substances shall not be carried up or down ladders.

c. When hoists are used to raise or lower hot substances, attention shall be given to assuring that the hoisting mechanism is adequate for the loads imposed and is securely braced and anchored.

d. All persons handling hot substances shall be provided protection against contact with, or exposure to radiant heat, glare, fumes, and vapors of the substances. At a minimum, roofers handling roofing materials shall be fully clothed including long sleeved shirts, shoes secured and at least 6 in (15 cm) in height, and gloves up to the wrist. > See Section 5.

e. Containers for handling and transporting hot substances shall be of substantial construction (minimum 24-gauge sheet steel), free from any soldered joints or attachments, and shall not be filled higher than 4 in (10.1 cm) from the top.

f. Piping used to transport hot substances shall have a entry and exit shut off valve and be made of flexible metallic hoses fitted with insulated handles. In cold climates, piping shall be insulated to prevent material from solidifying on the inside of the pipe.

06.C.06 An effective fire prevention program shall be described in the APP, AHA and maintained at the jobsite. All workers shall be trained in the specifics of the plan.
06.D HARMFUL PLANTS, ANIMALS, AND INSECTS

06.D.01 Protection against hazards from insects and/or animals harboring fleas or disease-carrying insects shall include, as applicable, the following:

a. PPE such as netted hoods, leather work gloves, and high-top work boots worn in conjunction with trousers and long-sleeved shirts;

b. Clothing treated at the factory with DEET or Permethrin are recommended in areas of high insect population;

c. Drainage or spraying of breeding areas;

d. Destroying or flagging (marking as hazard) of nests;

e. Smudge pots and aerosols for protecting workers and small areas;

f. Elimination of actions or conditions that propagate insects or vermin;

g. Extermination measures by a certified pesticide applicator or, for over the counter items, following the instructions on the label;

h. Approved first-aid procedures for employees;

i. Inoculation against diseases known to be a local hazard; and

j. Instruction in recognition of the animals and insects and their common nesting habits, aggressiveness, etc.

06.D.02 In areas where there is exposure to poisonous snakes or lizards, employees shall be required to:
a. Wear snake chaps or knee-high snake boots worn in conjunction with trousers and long-sleeved shirts;

b. Be trained in recognition of the snakes and their common nesting habits, aggressiveness, etc.; and

c. Be trained in the proper first aid procedures for bites.

06.D.03 In areas where employees are exposed to poisonous plants (e.g., poison ivy, oak, or sumac), the following protective measures, as applicable, shall be provided:

a. Removal or destruction of plants, where practical;

b. Appropriate protective clothing such as gloves;

c. Protective ointments;

d. Soap and water for washing exposed parts; and

e. Instruction in recognition and identification of the plants.

06.D.04 When burning poisonous plants, controls shall be instituted to prevent contact with or inhalation of toxic elements contained in the smoke.

06.E IONIZING RADIATION

06.E.01 Anyone who procures, uses, possesses, transports, transfers, or disposes of radioactive materials or radiation generating devices shall:

a. Notify, in writing, the GDA of the nature of the material or device, a description of intended use, the location of use and storage, and all transportation and disposal requirements;

b. Secure appropriate authorization or permit if a licensed or DOD regulated radiological device or radioactive material is to
be used on a DOD installation (a lead time of at least 45 days should be allowed for obtaining a DOD authorization or permit);

c. Provide to the GDA a copy of all US Nuclear Regulatory Commission (NRC) or Agreement State licenses, the Army Radiation Authorization (ARA), Army Radiation Permit, and reciprocity forms (to include NRC Form 241), as applicable.

06.E.02 Qualified Personnel.

a. Operations involving radiation hazards or use of radioactive material or radiation generating devices shall be performed under the direct supervision of a Radiation Safety Officer (RSO), who is qualified and responsible for radiological safety.

b. The RSO will be technically qualified and will meet the experience, training, and education requirements listed below:

(1) Formally trained in radiation protection topics including the following: physics of radiation; radiation's interaction with matter; mathematics necessary for the subject matter; biological effects of radiation; type and use of instruments for detection, monitoring and surveying radiation; radiation safety techniques and procedures; and use of time, distance, shielding, engineering controls, and PPE to reduce radiation exposure;

(2) Hands-on training in the uses of equipment, instrumentation, procedures, and theory used in their unit;

(3) Knowledge of applicable regulations including those of the Nuclear Regulatory Commission before (NRC), U.S. Environmental Protection Agency (USEPA), U.S. Department of Energy (DOE), DOT and DOD, to include all applicable DOD Components, pertaining to radioactive materials, radiation generating devices, and radioactive and mixed waste; and

(4) Knowledge of the USACE Radiation Safety Program, and recordkeeping requirements for work with radioactive materials and radiation generating devices.
06.E.03 Radiation Safety Program.

a. Operations involving radiation hazards, and users of
radioactive material or radiation generating devices, shall
develop and implement a Radiation Safety Program.

(1) The program shall be managed by the RSO and based on
sound radiation safety principles that shall keep occupational
doses and doses to the public ALARA.

(2) The RSO is responsible for performing or ensuring the
performance of an annual review of the program.
Documentation of the review shall be retained for two (2) years.

(3) A Radiation Safety Committee (RSC) shall be established in
accordance with 10 CFR 20 and DA PAM 385-24 as part of the
Radiation Safety Program.

b. All personnel entering an area where radioactive material or
radiation generating devices are used, and where there is a
potential for an individual to receive a Total Effective Dose
Equivalent (TEDE) of 100 millirem (mrem) or more in one (1)
year, shall receive instruction in:

(1) The presence of the material or device;

(2) Health and safety problems associated with exposure to
radiation, including the potential effects of radiation on a
pregnant female, the fetus, or embryo;

(3) Precautions and controls used to control exposure;

(4) Proper use of instrumentation and dosimetry in the area;

(5) The Radiation Safety Program required in 06.E.03.a; and

(6) Their rights and responsibilities.
c. The Radiation Safety Program will include plans and procedures for handling credible emergencies involving radiation and radioactive materials. This will include coordination with civilian and/or military emergency response organizations as necessary.

06.E.04 Dose Limits.

a. Occupational dose limits shall be based on the TEDE.
 > See Table 6-1.

(1) An annual (i.e., per calendar year) limit that is the more limiting of: 5 rem [0.05 sieverts (Sv)] TEDE, or the sum of the deep dose equivalent and the committed dose equivalent to any individual organ or tissue of 50 rem (0.5 Sv), or 15 rem (0.15 Sv) to the lens of the eye, or 50 rem (0.05 Sv) shallow dose equivalent to the skin or any extremity.

<table>
<thead>
<tr>
<th>Body part</th>
<th>Annual limits with RSSO approval</th>
<th>Annual limits without RSSO approval</th>
<th>Suggested ALARA limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole body</td>
<td>5 rem (0.05 Sv)</td>
<td>0.5 rem (0.005 Sv)</td>
<td>0.1 rem (0.001 Sv)</td>
</tr>
<tr>
<td>Individual organ</td>
<td>50 rem (0.5 Sv)</td>
<td>5 rem (0.05 Sv)</td>
<td>0.5 rem (0.005 Sv)</td>
</tr>
<tr>
<td>Lens of eye</td>
<td>15 rem (0.15 Sv)</td>
<td>1.5 rem (0.015 Sv)</td>
<td>0.15 rem (0.15 Sv)</td>
</tr>
<tr>
<td>Skin or extremity</td>
<td>50 rem (0.5 Sv)</td>
<td>5 rem (0.05 Sv)</td>
<td>0.5 rem (0.005 Sv)</td>
</tr>
</tbody>
</table>

(2) Without the written approval of the USACE Radiation Safety Staff Officer (RSSO), the annual occupational dose shall not exceed the more limiting of: 0.5 rem (0.005 Sv) TEDE, or the sum of the deep dose equivalent and the committed dose.
equivalent to any individual organ or tissue of 5 rem (0.05 Sv),
or 1.5 rem (0.015 Sv) to the lens of the eye, or 5 rem (0.05 Sv)
shallow dose equivalent to the skin, or any extremity.

(3) To keep doses ALARA, the user shall set administrative
action levels below the annual dose limits. These action levels
shall be realistic and attainable. Suggested action levels are the
more limiting of: 0.1 rem (0.001 Sv) TEDE, or the sum of the
deep dose equivalent and the committed dose equivalent to any
individual organ or tissue of 0.5 rem (0.005 Sv), or 0.15 rem
(0.0015 Sv) to the lens of the eye, or 0.5 rem (0.005 Sv) shallow
dose equivalent to the skin or any extremity.

(4) Any exposure in excess of an ALARA limit requires
investigation by the RSO.

b. In accordance with DA PAM 385-24, planned special
exposures shall not be performed.

c. No employee under 18 years of age shall receive
occupational exposure to ionizing radiation.

d. The dose to a declared pregnant employee shall not exceed
0.5 rem (0.005 Sv) during the entire gestation period and efforts
shall be made to avoid variations in a uniform monthly exposure
rate. If the dose to the embryo/fetus exceeds or is within 0.05
rem of 0.5 rem at the time of declaration, then dose to the
embryo/fetus is limited to 0.05 rem for the remainder of
gestation.

06.E.05 Radiation Monitoring, Surveys, and Dosimetry.

a. Users of radioactive material or radiation generating devices
shall conduct surveys and monitoring to ensure occupational
doze limits are not exceeded.

b. Instruments used for radiation monitoring and surveying shall
be:
(1) Available and used whenever radioactive material or radiation generating devices are used;

(2) Properly calibrated at least annually to a National Institute of Standards and Technology (NIST) traceable source;

(3) Appropriate for the type and intensity of the radiation surveyed;

(4) Operationally checked against a dedicated check source before each use; and

(5) The RSO must maintain at least two survey instruments to accommodate maintenance and calibration downtime.

c. Users of radioactive material or radiation generating devices and visitors or personnel performing work tasks in the area shall coordinate with the RSO for appropriate dosimetry use whenever any of the following situations exist:

(1) An individual enters a Radiation Area (> 5 mrem [50 microsieverts (μSv)] in any one (1) hour at 1 ft (30 cm) from the radiation source), or a High Radiation Area (> 100 mrem [1 mSv] in any one (1) hour at 1 ft (30 cm) from the radiation source), or a Very High Radiation Area (>500 rad [5 Gray (Gy)] in 1 hour at 3.3 ft (1 m) from the radiation source);

(2) An individual has the potential to receive greater than the ALARA limits established pursuant to 06.E.04.a.(3) in 1 year.

d. All external dosimetry shall be processed by a National Voluntary Laboratory Accreditation Program (NVLAP) certified laboratory. USACE personnel shall use dosimetry provided by the Army Dosimetry Center.

e. Users of unsealed radioactive material sources shall institute an internal dosimetry program:
(1) When there is a potential for an employee to receive an internal dose of greater than 0.5 rem (5 mSv) per year;

(2) That is reviewed and approved by a qualified health physicist; and

(3) That contains provisions for a pre-exposure bioassay, a bioassay method capable of detecting internal radioactive materials, at a level below 10% of the annual limits of intake (ALI) listed in Appendix B of 10 CFR 20 for each radionuclide used, appropriate action levels for requiring additional bioassay, actions for individuals found to have internally deposited radioactive materials, and provisions for post-exposure bioassay.

06.E.06 Access, Storage, and Control.

a. All radiological devices and radioactive materials shall be designed, constructed, installed, used, stored, transported, and disposed of in such a manner to ensure personnel exposures are kept ALARA.

b. Users of radioactive materials or radiation generating devices shall post signs and control access to radiation areas in accordance with 06.E.08.

c. Where radiation levels exceed 2 mrem (20 μSv) in any 1 hour, users shall use engineering controls, shielding, access time limitation, and/or physical separation to keep doses to the public ALARA.

d. Users shall secure radioactive material and radiation generating devices against theft or unauthorized use.

e. Storage shall be in accordance with any license or permit requirements.
f. Radioactive material and radiation generating devices, not in storage, shall be under constant control and surveillance.

g. Operations involving regulated radiation hazards or users of regulated radioactive material or radiation generating devices shall conduct surveys to ensure that the public dose limit of 0.01 rem (0.0001 Sv) is not exceeded.

06.E.07 Respiratory Protection and other Controls.

a. Users of radioactive material shall, to the extent practicable, institute process or engineering controls to limit concentrations of radioactive materials in air.

b. Where process or engineering controls are unable to control airborne radioactive material concentrations, users shall increase monitoring and limit intakes of radioactive materials through control of access, limitation of exposure times, use of respiratory protection equipment, or other controls.

c. The use of respiratory protection equipment shall be in compliance with 05.G of this manual, and shall be limited by the protection factors listed in Appendix A of 10 CFR 20.

06.E.08 Signs, Labels, and Posting Requirements.

a. The RSO shall post in a conspicuous location a sign or signs bearing the standard radiation symbol shown in Figure 8-7 and the following words:

(1) "Caution, Radiation Area" - areas where radiation field is equal to or greater than 5 mrem (0.05 mSv) in any 1 hour and less than 100 mrem (1 mSv) in any 1 hour at 30 cm from the radiation source;

(2) "Caution, High Radiation Area" - areas where radiation field is equal to or greater than 100 mrem (1 mSv) in any 1 hour at 12 in (30 cm) from the radiation source and less than 500
rads (5 Gy) in any 1 hour at 3.3 ft (1 m) from the radiation source;

(3) "Grave Danger, Very High Radiation Area" - areas where the radiation field is equal to or greater than 500 rads (5 Gy) in any 1 hour;

(4) "Caution, Airborne Radioactivity Area" – rooms, enclosures, or areas where airborne radioactive material concentrations are greater than the derived air concentration (DAC) limits listed in 10 CFR 20, Appendix B or where concentrations exist to such a degree that an individual present in the area without respiratory protective equipment could exceed, during the hours an individual is present in a week, an intake of 0.6% of the annual limit on intake (ALI) or 12 DAC-hours; or

(5) "Caution, Radioactive Material" – areas or rooms where quantities of radioactive materials in excess of ten times the 10 CFR 20, Appendix C quantities are used or stored.

b. Users who receive or expect to receive a package containing radioactive material shall follow the package receipt procedures listed in 10 CFR 20.1906.

c. When a site has an NRC license, the RSO shall post an NRC Form 3 in a location visible to all employees who work with or around radioactive materials.

06.E.09 Radioactive Waste Disposal.

a. Radioactive sealed sources (and gauges) when no longer needed may be returned (transferred) to the manufacturer. The local USACE Command RSO and the USACE RSSO must be notified and any applicable licenses or permits amended or terminated.
b. Radioactive waste disposal shall be coordinated with the GDA. For disposal actions specific to USACE operations and activities the GDA shall coordinate with the USACE Command RSO and the USACE Environmental and Munitions Center of Expertise.

c. Tritium (H-3) and Carbon-14 used in liquid scintillation counting, at concentrations below 0.05 microcuries per gram (μCi/g), may be disposed without regard to its radioactivity. (Note: Many liquid scintillation fluids are hazardous wastes and must be disposed of as such.)

06.E.10 Records.

a. All users of radioactive material or radiation generating devices shall prepare and maintain records of the Radiation Safety Program for three (3) years after termination of the license or permit.

b. For any individual for whom monitoring was required by 06.E.05, the RSO shall prepare and maintain documentation of that person's occupational dose during the current year. The RSO shall also attempt to obtain records of cumulative occupational radiation dose.

c. All users of radioactive material or radiation generating devices shall prepare and maintain records of all calculated or monitored radiation dose to individual members of the public so as to document compliance with 06.E.05.

06.E.11 Reports.

a. Any loss, theft, damage, or overexposure shall immediately upon discovery be reported to the RSO who will then file a report (if required) with NRC in accordance with the requirements of 10 CFR 20.
b. Incidents or accidents involving radioactive material or radiation generating devices shall be reported immediately to the RSO and the USACE RSSO.

c. Annual reports shall be issued by the RSO for each individual USACE radiation employee with the recorded or calculated dose assigned to the USACE individual for the year or specific work project. These shall be maintained in such a manner that accumulated exposure can be determined at a future date.

06.E.12 Transportation

a. Users of radioactive material shall comply with the requirements of the DOT for inter- and intra-state transport contained in 49 CFR.

b. Persons who prepare shipments of radioactive materials that are defined as hazardous material under DOT regulations are required to be trained (49 CFR 173.1(b)), certified, and issued an appointment letter in accordance with DOD 4500.9-R, Chapter 204.

06.E.13 Medical surveillance. > See Section 28 for requirements specific to work conducted under the provisions of 29 CFR 1910.120 and 29 CFR 1926.65.

a. Medical examinations are not routinely required before occupational exposure to ionizing radiation. For USACE personnel, a medical examination shall be conducted in accordance with DA Pam 40-501, when deemed necessary, by a physician, the RSO, or other regulations. The RSO will coordinate with supporting medical personnel to help ensure that personnel receive appropriate occupational health surveillance.

b. All cases of overexposure and suspected ingestion or inhalation of radioactive materials shall be referred to a physician for examination.
06.E.14 Radon.

a. Any structure, building or tunnel, wherein employees may be reasonably expected to be exposed to radon concentrations exceeding 7.5 picocuries per liter (pCi/L), shall be tested for radon. Where the radon concentration exceeds 7.5 pCi/L, requirements for exposure, SOPs, posting, training, medical records, record keeping and reporting shall apply, per 29 CFR 1910.1096. 29 CFR 1910.1096(c)(1) refers to Table 1 of Appendix B to 10 CFR 20. The Table 1 value for radon is 30 pCi/L.

b. USACE employees and USACE facilities will comply with testing, exposure, and mitigation guidance provided in AR 200-1.

06.F NONIONIZING RADIATION AND MAGNETIC AND ELECTRIC FIELDS

06.F.01 Lasers.

a. Only qualified and trained employees may be assigned to install, adjust, and operate laser equipment. Proof of qualification of the laser equipment operator shall be in the operator's possession during operation. A qualified employee shall design or review for adequacy all radiation safety Standard Operating Procedure (SOP).

b. Laser equipment shall bear a label to indicate make, maximum output, and beam spread.

c. Areas in which lasers are used shall be posted with standard laser warning signs. > See Figures 8-5 and 8-6

d. Employees whose work requires exposure to laser beams shall be provided with appropriate laser safety goggles that will protect for the specific wavelength of the laser and be of optical density adequate for the energy involved, as specified in Table 6-2. Protective goggles shall bear a label identifying the
following data: the laser wavelengths for which use is intended, the optical density of those wavelengths, and the visible light transmission.

TABLE 6-2

LASER SAFETY GOGGLE OPTICAL DENSITY REQUIREMENTS

<table>
<thead>
<tr>
<th>Intensity, continuous wave maximum power density (watts/cm²)</th>
<th>Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Optical density</td>
</tr>
<tr>
<td>0.01</td>
<td>5</td>
</tr>
<tr>
<td>0.1</td>
<td>6</td>
</tr>
<tr>
<td>1.0</td>
<td>7</td>
</tr>
<tr>
<td>10.0</td>
<td>8</td>
</tr>
</tbody>
</table>

e. Beam shutters or caps shall be used, or the laser turned off, when laser transmission is not required. When the laser is left unattended for a period of time (e.g., during lunch hour, overnight, or at change of shifts) the laser shall be turned off.

f. Only mechanical or electronic means shall be used as a detector for guiding the internal alignment of the laser.

g. The laser beam shall not be directed at employees: whenever possible, laser units in operation shall be set above the heads of employees.

h. When it is raining or snowing or when there is dust or fog in the air, the operation of laser systems shall be prohibited (as practical); during such weather conditions employees shall be kept out of range of the areas of source and target.

i. Employee exposure to laser power densities shall be within the threshold limit values (TLVs) as specified by the ACGIH in "Threshold Limit Values and Biological Exposure Indices."
j. Only Class 1, 2, or 3a lasers may be used as hand-held pointing devices. Lasers used as pointing devices (e.g., during briefings) shall not be directed toward employees and shall be handled and stored in accordance with the manufacturer's recommendations.

k. Suspected LASER eye injuries: Immediately evacuate personnel suspected of experiencing potentially damaging eye exposure from LASER radiation to the nearest medical facility for an eye examination. LASER eye injuries require immediate specialized ophthalmologic care to minimize long-term visual acuity loss.

06.F.02 Radio frequency and electromagnetic radiation.

a. Ensure that no employee is exposed to electric or magnetic fields, radio frequency (RF) including infrared, ultraviolet, and microwave radiation levels exceeding the values listed in the ACGIH Threshold Limit Values and Biological Exposure Indices.

b. Routine use of RF protective clothing to protect personnel is prohibited.

(1) Protective equipment, such as electrically insulated gloves and shoes for protection against RF shock and burn, or for insulation from the ground plane, is permissible when engineering controls or procedures cannot eliminate exposure hazards.

(2) Users will identify, attenuate, or control potentially hazardous RF electromagnetic fields and other radiation hazards associated with electronic equipment by engineering design, administrative actions, or protective equipment, (in that order), or a combination thereof. Use process and engineering controls before personal protective equipment (PPE) to protect employees.

c. All personnel routinely working with RF emitting equipment where exposures may exceed TLVs will receive training in RF
hazards, procedures for minimizing these hazards, and their responsibility to limit potential overexposures. Operator's manuals, Training Orders, Equipment SOPs, etc. will be available for all RF generating equipment and safety guidance will be followed.

d. Whenever personnel are potentially exposed to RF fields exceeding PELs, the fields will be measured and evaluated using Institute of Electrical and Electronics Engineers (IEEE) guidance. District and/or project safety personnel will use this information and document RF environments. Where multiple RF electromagnetic radiation emitters are located in fixed arrangements, RF evaluation data will include a determination of weighted contributions from expected simultaneously operated emitters.

0.6.G VENTILATION AND EXHAUST SYSTEMS

06.G.01 Portable and Temporary Ventilation Systems

a. All portable or temporary ventilation systems shall remove dusts, fumes, mists, vapors and gases away from the worker and the work environment or provide air to prevent an oxygen deficient atmosphere.

b. Portable or temporary ventilation systems shall be used as designed by the manufacturer. All hoses shall be only as long as the maximum allowed by the manufacturer to provide the required air flow at the supply or exhaust point. If adding or changing hoses, only hoses and/or connectors shall be used that are comparable and compatible with the hoses and connectors provided by the manufacturer.

c. Make-up air for air supply ventilation systems shall draw air free of contaminants and away from any potential contaminant source.

d. Any portable or temporary ventilation system and the locations the systems are to be used shall be approved by the
GDA before use. Manufacturer information or design criteria shall be provided with the request for approval.

e. Airborne contaminants created by portable or temporary ventilation systems (such as drills, saws, and grinding machines) in concentrations exceeding acceptable safe limits shall be effectively controlled at the source. <See 06.A.03.

06.G.02 Ventilation systems shall be operated and maintained in such a manner to ensure the maintenance of a volume and velocity of exhaust air sufficient to gather contaminants and safely transport them to suitable points for removal.

06.G.03 Duration of operation.

a. Ventilation systems shall be operated continuously during operations when persons are exposed to airborne contaminants or explosive gases at or above acceptable safe limits as defined in 06.A.01 or as otherwise specified by this manual, referenced standards, or regulations.

b. Ventilation systems shall remain in operation for a time after the work process or equipment has ceased to ensure the removal of any contaminants in suspension or vaporizing into the air.

06.G.04 Local exhaust ventilation systems shall be periodically evaluated to ensure that proper contaminant capture, movement through the system and filtration or exhaust to the outside.

06.G.05 Dusts and refuse materials removed by exhaust systems or other methods shall be disposed of in a manner that will not create a hazard to employees or the public and in accordance with Federal, State, and local requirements.

06.H ABRASIVE BLASTING

06.H.01 Introduction. Silica sand shall NOT be used as an abrasive blasting media. Alternative abrasive blasting materials
are available and listed in Table 6-3. Depending on the application, one of these alternative materials is suggested for use as an abrasive blasting media.

TABLE 6-3
ABRASIVE BLASTING MEDIA: SILICA SUBSTITUTES

<table>
<thead>
<tr>
<th>APPLICATIONS</th>
<th>Media</th>
<th>ADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning Hard Metals (e.g. Titanium)</td>
<td>ALUMINUM OXIDE</td>
<td>Recyclable</td>
</tr>
<tr>
<td>Removing Metal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etch Glass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carve Granite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Paint Removal</td>
<td>BAKING SODA (Sodium Bicarbonate)</td>
<td>Less Material Used/Less Cleanup Low Nozzle Pressures (35-90 PSI) Non-Sparking Water Soluble</td>
</tr>
<tr>
<td>Stripping Aircraft Skins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaning Surfaces in Food Processing Plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removing Paint from Glass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Paint, Rust & Scale Removal from Steel</td>
<td>COAL SLAG</td>
<td>Less Than 1% Free Silica Inert Fast Cutting Creates Anchor Profile</td>
</tr>
<tr>
<td>Paint Removal from Wood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure of Aggregates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Paint, Rust & Scale Removal from Steel</td>
<td>COPPER SLAG</td>
<td>Rapid Cutting</td>
</tr>
<tr>
<td>Paint Removal from Wood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure of Aggregates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deburring</td>
<td>CORN COB GRANULES</td>
<td>Low Consumption Low Dust Levels Biodegradable</td>
</tr>
<tr>
<td>Paint & Rust Removal from Wood & Metal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaning Aircraft Parts</td>
<td>DRY ICE (Carbon Dioxide)</td>
<td>No Residue Remains Minimal Cleanup</td>
</tr>
<tr>
<td>Cleaning Exotic Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Paint, Rust & Scale Removal from Steel</td>
<td>GARNET</td>
<td>Lower Nozzle Pressures (60-70 PSI) Low Dust Levels Fast Cleaning Rates Can be Recycled 6-7 Times Low Free Silica</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 6-3 (CONTINUED)

ABRASIVE BLASTING MEDIA: SILICA SUBSTITUTES

<table>
<thead>
<tr>
<th>APPLICATIONS</th>
<th>Media</th>
<th>ADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning & Polishing Deburning</td>
<td>GLASS BEADS</td>
<td>Uniform Size and Shape</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recyclable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provide High Luster</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polished Surface</td>
</tr>
<tr>
<td>General Paint, Rust & Scale Removal from Steel</td>
<td>NICKEL SLAG</td>
<td>Rapid Cutting</td>
</tr>
<tr>
<td>Cleaning Soft Materials (e.g. Aluminum, Plastic, Wood) Cleaning Surfaces in the Petroleum Industry</td>
<td>NUT SHELLS</td>
<td>High Removal Speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Sparking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Consumption</td>
</tr>
<tr>
<td>Clean Light Mill Scale & Rust from Steel 2.5 MIL Profile & Finer</td>
<td>OLIVINE</td>
<td>Low Chloride Ion Level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Conductivity</td>
</tr>
</tbody>
</table>

a. Abrasive blasting operations shall be evaluated to determine composition and toxicity of the abrasive and the dust or fume generated by the blasted material, including surface coatings. This determination shall be documented on the AHA (Activity Hazard Analysis) developed for the abrasive blasting activity.

b. Written operating procedures shall be developed and implemented for abrasive blasting operations, including pressurized pot procedures (filling, pressurizing, depressurizing, and maintenance and inspection). The procedures should be added as an appendix to the APP.

c. The concentration of respirable dust and fume in the breathing zone or persons exposed to the blasting operation shall be maintained in accordance with 06.A.01.
d. No employee will be allowed to work in abrasive blasting operations unless he has met the medical surveillance and training and experience, and has been provided the appropriate PPE.

e. All production and control systems used in a stationary abrasive-blasting process shall be designed or maintained to prevent escape of airborne dust or aerosols in the work environment and to ensure control of the abrasive agents.

f. Pressurized systems and components shall be inspected, tested, certified and maintained in accordance with the requirements of Section 20.

g. Engineering controls for noise and dust shall be considered even if they cannot reduce the exposures to the lowest Occupational Exposure Limit (OEL) but will significantly reduce noise and dust exposure to the employees.

06.H.02 Blast Cleaning Enclosures and Rooms:

a. Blast cleaning enclosures shall be exhaust ventilated in such a way that a continuous inward flow of air will be maintained at all openings in the enclosure during the blasting operation.

b. All air inlets and access openings shall be well baffled to prevent the escape of abrasive and the recommended continuous inward air velocity at the air inlets is a minimum of 250 fpm (4.6 kph).

c. Negative pressure should be maintained inside during blasting.

d. The rate of exhaust shall be sufficient to provide prompt clearance of the dust-laden air within the enclosure after cessation of the blasting.

e. Minimum recommended protective equipment of an abrasive blaster working inside a blasting room, in the open, in enclosed
space, or outdoors is: safety boots or toe guards; durable coveralls, closeable at wrists, ankles, and other openings to prevent entry of abrasive dust and rubbing of such; respiratory, eye, and hearing protection; and gauntlet gloves.

f. If abrasive blasting is automated, the blast shall be turned off before the enclosure is opened. The exhaust system shall be run for a sufficient period of time to remove the dusty air within the enclosure to minimize the escape of dust into the workroom and prevent any health hazard.

g. In the room, a cleanup method other than broom sweeping or compressed air blowing should be used to collect the abrasive agent after blasting (e.g., vacuum cleaning). If the blasting agent is removed manually, appropriate personal protective equipment, including respiratory protection shall be worn and not removed until outside the blasting room.

06.H.03 Blasting without Enclosures.

a. If occasional but regular abrasive blasting must be performed inside a building without enclosures, respiratory protection shall be provided for all employees in the area. Portable engineering control devices shall be used at the location to collect the entire used abrasive agent as it is applied.

b. When airborne abrasive-blasting dust becomes sufficiently heavy in an area to cause a temporary safety hazard by reduced visibility, or discomfort to the unprotected employees not engaged in abrasive blasting, such operations in the affected area shall be discontinued until the airborne dust is removed by exhaust ventilation and the settled dust has been removed from the horizontal surfaces in the area. If such operations have to continue, appropriate respiratory protection shall be provided to those employees remaining in the area, provided visibility is adequate.

c. Abrasive materials shall not be allowed to accumulate on aisles and walkways to create a slipping hazard.
d. If wet abrasive blasting is employed to reduce dust exposures, the aerosols produced and the dried residues that become airborne might be potential hazards and shall be considered.

06.H.04 Confined space. Abrasive blasting work conducted in a confined space shall be performed in accordance with Section 34 and 29 CFR 1910.146. If the space is mechanically ventilated, means shall be provided to collect dust before release to the open atmosphere.

06.H.05 Blasting Outdoors.

a. Blasters shall be protected in a manner equivalent to Section 05 and/or 29 CFR 1910.94(a)(5), whichever is more stringent.

b. Prudent care shall be taken to prevent the dust cloud from spreading to other work areas. Check with Local and State requirements which may add restrictions to outdoor abrasive blasting.

c. Hearing protection and respiratory protection shall be available to all other employees in the area if their presence is required.

06.H.06 Personal Protective Equipment (PPE).

a. Selection and use of PPE shall be in accordance with Section 05.

b. Air-supplied helmets, blast helmets/hoods, dust respirators, ear muffs, safety boots or toe guards, durable coveralls, closeable at wrists, ankles, and other openings, and safety glasses should be an individual issue item, identified with and used by only one employee. Such equipment may be reissued to another employee only after complete cleaning, repair, and decontamination.
c. Means shall be provided to clean and store air-supplied respiratory equipment after each shift of use. Storage shall be in a clean enclosure such as locker, footlocker, plastic container or zip-lock type bag. Employees shall be trained to maintain issued equipment in clean and good working condition.

d. Replacement of prescription or plano safety glasses shall be made if multiple pitting or etching is visible in the center of the lenses.

e. Replacement of faceplates in air-supplied helmets and blast helmets/hoods shall take place when a side-on light source produces obscuring visible reflections and glare from the etched spots and pit holes in the faceplate. Mylar coating, or similar transparent plastic material, is recommended to protect the glass or plastic faceplate.

f. Length of air hose may not be altered from the manufacturer's specifications.

g. Daily checks shall be performed by the wearer of PPE to maintain it in good working condition. Rips, tears, and openings of PPE that expose skin to abrasive agents shall be mended or replaced. Functional tests for leaks, proper respiration, and good connections shall be performed on the complete air-supply system.

h. Air supply - portable.

(1) The breathable air supplied to the blast helmet or hood shall be drawn from an oil and carbon monoxide free air compressor. The compressor used for blasting cannot be used for breathing air. Breathable air-supply system should be equipped, if possible, with audible alarm at the helmet or hood to warn the user of low air pressure.

(2) Hearing protection. Suitable hearing protection, capable of attenuating employee noise exposure below an 8-hour TWA of
85 dB(A), shall be worn inside the blast helmet or hood unless hearing protection is an integral part of such helmet or hood.

(3) Heat stress. Cooling of breathable air, supplied to the blast helmets/hoods, should be considered depending on season and employee exposure to heat sources.

06.I INCLEMENT WEATHER AND HEAT/COLD STRESS MANAGEMENT

06.I.01 When there are warnings or indications of impending severe weather (heavy rains, thunderstorms, damaging winds, tornados, hurricanes, floods, lightning, etc.), weather conditions shall be monitored using a weather station that is part of the National Oceanic and Atmospheric Administration (NOAA) weather radio all hazards network or similar notification system. Appropriate precautions shall be taken to protect personnel and property from the effects of the severe weather. In areas with frequent inclement weather, the employer's APP or project safety plan shall include a discussion of:

a. Severe weather triggers to alert the SHO to monitor weather conditions;

b. Training on severe weather precautions, and actions;

c. Identified area of retreat, preferably a substantial building.

06.I.02 Employers shall develop a comprehensive written activity/site-specific heat/cold stress monitoring plan, in accordance with this Section and using the exposure thresholds in ACGIH "Threshold Limit Values and Biological Exposure Indices" as guidance, and other references the employer determines applicable to protect employees exposed to temperature extremes. The plan shall be incorporated in the employer's APP or project safety and health plan and shall follow the guidelines of 06.I.04 of this manual.
06.I.03 In hot environments, the following guidelines will be followed to prevent heat related injury.

a. Drinking water shall be made available to employees and employees encouraged to frequently drink small amounts, e.g., one cup every 15-20 minutes; the water shall be kept reasonably cool. > See Section 02.C.

b. Tool box training in hot environments shall include training on the symptoms of heat related problems, contributing factors to heat related injuries, and prevention techniques.

c. When possible, work should be scheduled for cooler periods during the day.

d. Individuals shall be encouraged to take breaks in a cooler location, and use cooling devices as necessary, such as cooling vests, to prevent heat related injury. A buddy system shall be established to encourage fluid intake and watch for symptoms of heat related injury.

e. SSHO shall monitor those individuals who have had a previous heat-related injury, are known to be on medication, or exhibits signs of possibly having consumed large amounts of alcohol in the previous 24 hours for signs, or indicating symptoms of heat related injuries.

f. Individuals who are not acclimatized shall be allowed additional breaks. The period and number should be determined by the SSHO and provided to the supervisor and employee for implementation.

06.I.04 In situations where heat stress may impact employee safety and health, employee acclimatization and workloads shall be assessed and work/rest regimens shall be established.

a. For employees in permeable work clothing, Wet Bulb Globe Temperature (WBGT) Index or physiological monitoring shall be conducted and work/rest regimens established. The SSHO
should assess the condition of the employees, specific weather conditions, work tasks, and other environmental factors and conditions to determine when to begin monitoring.

b. For employees in impermeable work clothing, only physiological monitoring shall be conducted, and work/rest regimens and fluid replacement schedules shall be established.

06.I.05 Where employees are exposed to solar radiation for short periods and there is the potential for sunburn or exposure for prolonged periods where long-term exposure could lead to health effects such as skin cancer, they shall be provided sun screen with a sun protection factor (SPF) appropriate for their skin type and exposure. Sunscreens shall be used only in accordance with the manufacturer's recommendations.

06.I.06 Employees working in air temperatures of -15 °F (-26 °C) or less shall use the work-/warm-up regimen specified in the ACGIH "Threshold Limit Values and Biological Exposure Indices."

06.I.07 At air temperatures of 36 °F (2 °C) or less, employees who become immersed in water or whose clothing becomes wet shall immediately change into dry clothing/blankets and be treated for hypothermia. Blankets shall be included as part of the first aid equipment on such activities, and employees shall insure they have a change of clothing.

06.I.08 When manual dexterity is not required of an employee, he shall wear thermally protective gloves when exposed to the following temperatures.

a. For light work, 40 °F (4 °C) and below; and

b. For moderate and heavy work, 20 °F (-6.6°C) and below.

06.I.09 When fine work is required to be performed with bare hands for more than 10-20 minutes in an environment below 50 °F
(10 °C), procedures shall be established for keeping employees’ hands warm.

06.I.10 Metal handles and control bars shall be covered by thermal insulating material at temperatures below 30 °F (–1 °C).

06.I.11 Cold weather sheltering and clothing requirements.

a. If wind chill is a factor at a work location, the cooling effect of the wind shall be reduced by shielding the work area or requiring employees to wear an outer windbreak layer garment. An AHA and/or PHA shall be prepared as an attachment to the site-specific, cold-stress monitoring plan and shall identify specific controls to minimize employee exposure to extreme cold.

b. Extremities, ears, toes, and nose shall be protected from extreme cold by proper clothing such as hats, gloves, masks, etc.

c. Employees whose clothing may become wet shall wear an outer layer of clothing that is impermeable to water.

d. Outer garments must provide for ventilation to prevent wetting of inner clothing by sweat.

e. If clothing is wet, the employee shall change into dry clothes before entering a cold environment.

f. Employees shall change socks and removable felt insoles at regular daily intervals or shall use vapor barrier boots.

g. Due to the added danger of cold injury due to evaporative cooling, employees handling evaporative liquid (such as gasoline, alcohol, or cleaning fluids) at air temperatures below 40 °F (4 °C) shall take precautions to avoid soaking of clothing or contact with skin.
h. Eyewear providing protection against ultraviolet light, glare, and blowing ice crystals shall be provided employees in snow-
and/or ice-covered terrain.

06.I.12 Environmental monitoring shall be conducted as follows:

a. At air temperatures below 45 °F (7 °C) the temperature shall be monitored a minimum of every eight (8) hours or as warranted.

b. At temperatures below 45°F (7 °C) and above 30 °F (-1 °C) the temperature and wind speed shall be monitored every four (4) hours or as warranted.

c. At air temperatures below 30 °F (-1 °C) the temperature and wind speed shall be measured and recorded at least every four (4) hours or more frequently if it begins to lower.

d. The equivalent chill temperature and frost-bite precautions shall be determined by using Tables 6-4 and 6-5.
TABLES 6-4 and 6-5

Wind Chill Temperature Table

<table>
<thead>
<tr>
<th>Wind Speed (mph)</th>
<th>Air Temperature (°F)</th>
<th>40</th>
<th>35</th>
<th>30</th>
<th>25</th>
<th>20</th>
<th>15</th>
<th>10</th>
<th>5</th>
<th>0</th>
<th>-5</th>
<th>-10</th>
<th>-15</th>
<th>-20</th>
<th>-25</th>
<th>-30</th>
<th>-35</th>
<th>-40</th>
<th>-45</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>-5</td>
<td>-10</td>
<td>-15</td>
<td>-20</td>
<td>-25</td>
<td>-30</td>
<td>-35</td>
<td>-40</td>
<td>-45</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>36</td>
<td>31</td>
<td>25</td>
<td>19</td>
<td>13</td>
<td>7</td>
<td>1</td>
<td>-5</td>
<td>-10</td>
<td>-15</td>
<td>-20</td>
<td>-25</td>
<td>-30</td>
<td>-35</td>
<td>-40</td>
<td>-45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>34</td>
<td>27</td>
<td>21</td>
<td>15</td>
<td>9</td>
<td>3</td>
<td>-1</td>
<td>-10</td>
<td>-15</td>
<td>-20</td>
<td>-25</td>
<td>-30</td>
<td>-35</td>
<td>-40</td>
<td>-45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>29</td>
<td>23</td>
<td>16</td>
<td>9</td>
<td>3</td>
<td>-4</td>
<td>-11</td>
<td>-17</td>
<td>-24</td>
<td>-31</td>
<td>-37</td>
<td>-44</td>
<td>-51</td>
<td>-58</td>
<td>-64</td>
<td>-71</td>
<td>-78</td>
<td>-84</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>28</td>
<td>21</td>
<td>14</td>
<td>7</td>
<td>0</td>
<td>-7</td>
<td>-14</td>
<td>-21</td>
<td>-27</td>
<td>-34</td>
<td>-41</td>
<td>-48</td>
<td>-55</td>
<td>-62</td>
<td>-69</td>
<td>-76</td>
<td>-82</td>
<td>-89</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>27</td>
<td>20</td>
<td>13</td>
<td>6</td>
<td>-1</td>
<td>-8</td>
<td>-15</td>
<td>-22</td>
<td>-29</td>
<td>-36</td>
<td>-43</td>
<td>-50</td>
<td>-57</td>
<td>-64</td>
<td>-71</td>
<td>-78</td>
<td>-84</td>
<td>-91</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>26</td>
<td>19</td>
<td>12</td>
<td>4</td>
<td>-3</td>
<td>-10</td>
<td>-17</td>
<td>-24</td>
<td>-31</td>
<td>-38</td>
<td>-45</td>
<td>-52</td>
<td>-60</td>
<td>-67</td>
<td>-74</td>
<td>-81</td>
<td>-88</td>
<td>-95</td>
<td></td>
</tr>
</tbody>
</table>

RISK OF FROSTBITE (see times on chart below)

GREEN LITTLE DANGER (frostbite occurs in >2 hours in dry, exposed skin)

YELLOW INCREASED DANGER (frostbite could occur in 45 minutes or less in dry, exposed skin)

RED GREAT DANGER (frostbite could occur in 5 minutes or less in dry, exposed skin)

Time to occurrence of frostbite in minutes or hours

(In the most susceptible 5% of personnel.)

<table>
<thead>
<tr>
<th>Wind Speed (mph)</th>
<th>Air Temperature (°F)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>>2h</td>
</tr>
<tr>
<td>5</td>
<td>>2h</td>
</tr>
<tr>
<td>10</td>
<td>>2h</td>
</tr>
<tr>
<td>15</td>
<td>>2h</td>
</tr>
<tr>
<td>20</td>
<td>>2h</td>
</tr>
<tr>
<td>25</td>
<td>>2h</td>
</tr>
<tr>
<td>30</td>
<td>>2h</td>
</tr>
<tr>
<td>35</td>
<td>>2h</td>
</tr>
<tr>
<td>40</td>
<td>>2h</td>
</tr>
<tr>
<td>45</td>
<td>>2h</td>
</tr>
<tr>
<td>50</td>
<td>>2h</td>
</tr>
</tbody>
</table>

WET SKIN COULD SIGNIFICANTLY DECREASE THE TIME FOR FROSTBITE TO OCCUR.

Source: USAREM Technical Note “SUSTAINING HEALTH & PERFORMANCE IN COLD WEATHER OPERATIONS,” October 2001
06.I.13 If employees express a concern about their ability to work in a cold environment, they shall provide medical documentation on their ability to work in cold weather (30 °F (-1 °C) or below). If medical documentation is provided that shows they are suffering from diseases or taking medication that interferes with normal body temperature regulation or reduces tolerance to work in cold environments, they should be excluded from the cold weather tasks.

06.J CUMULATIVE TRAUMA PREVENTION

06.J.01 Work activities that require employees to conduct lifting, handling, or carrying; rapid and frequent application of high grasping forces; repetitive hand/arm manipulations; tasks that include continuous, intermittent, impulsive, or impact hand-arm vibration or whole body vibration; and other physical activities that stress the body's capabilities shall be evaluated by a competent person to ensure the activities are designed to match the capabilities of the employees.

06.J.02 When work activities that stress the body's capabilities are identified, the employer shall incorporate it in the AHA and identify it as a hazard in the SSHP/APP. The plan shall incorporate processes that recognize cumulative trauma hazards, isolate causative factors, inform and train employees, and implement controls.

06.J.03 Control measures to minimize hand-arm vibration shall include: the use of anti-vibration tools and/or gloves; implementation of work practices that keep the employee's hands and body warm and minimize the vibration coupling between the employee and the vibration tool; application of specialized medical surveillance to identify personnel susceptible to vibration and adherence to the TLV guidelines as specified in the ACGIH in "Threshold Limit Values and Biological Exposure Indices";
06.K INDOOR AIR QUALITY (IAQ) MANAGEMENT

06.K.01 Investigations. Supervisors will report employee concerns or complaints of IAQ problems to the facility manager/owner or other designated representative. That individual will be responsible for investigating and resolving the IAQ complaint in a timely manner and reporting back to the supervisor. For leased facilities, procedures for resolving IAQ issues should ultimately be investigated and resolved by the lessor. An industrial hygienist or other qualified and competent person will initiate an IAQ investigation using appropriate guidelines published by ACGIH; AIHA; ANSI; American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE); USEPA; OSHA; NIOSH; or other Federal, DOD, State, local, and host nation requirements.

a. Ensure building activities, such as painting, roof repairs, carpet installation and repair and other activities likely to involve usage of chemicals or solvents, are conducted after normal working hours where possible or in a manner that will prevent exposure to occupants.

b. Evaluate the condition of the air-handling system for proper operation, make-up air supply, blocked dampers or diffusers, cleanliness of ducts and filters, and standing water or wet areas.

c. Educate employees and supervisors concerning measures they can take to help maintain acceptable IAQ in their work areas. Employees shall be instructed not to make unauthorized modifications to the heating, ventilation, and air conditioning (HVAC) systems (i.e., blocking off vents, removing ceiling tiles).

06.K.02 Environmental tobacco smoke (ETS). Employees shall be protected from involuntary exposure to ETS in working and public living environments.

a. Smoking shall be prohibited inside all DOD vehicles, aircraft, vessels, and work buildings.
b. Designated smoking areas only in outdoor locations that are not commonly used or accessed by nonsmokers shall be provided. Receptacles will be provided in designated smoking areas for the containment of cigarette butts and other smoking by-products.

c. Designated smoking areas shall be located away from supplied-air intakes and building entryways/egresses to prevent ETS from entering occupied buildings and structures.

06.K.03 Mold Evaluation. Because mold can contribute to health problems ranging from minor irritation to serious debilitation if found in high quantities or improper locations, a mold assessment shall be performed when need is indicated.

a. Assessments/remediation shall be overseen by a person experienced in understanding both the properties of mold behaviors and building design or construction. This person may be an industrial hygienist, microbiologist, or a qualified mold inspector who has been certified by an independent IAQ certifying agency and/or who can demonstrate training and experience in the IAQ investigative field. Some states, local authorities and host nations also require this person to be licensed.

b. Assessment of potential mold hazards shall first be visual and based on criteria in the USACHPPM, TG 278, Industrial Hygiene Preventive Medicine Mold Assessment Guide, the EPA Indoor Air Quality Checklists, and guidance from AIHA. Bulk and/or air samples are generally not necessary to evaluate mold hazardous environments. In climates with high humidity, it may be necessary to perform both qualitative and quantitative air samples of indoor and outdoor locations in order to determine the extent of the impact on the building and to set a pre-remediation baseline.

c. Causes of mold (i.e., water leakages, seepages, drainage, HVAC/insulation repaired, etc.) shall be addressed before completing mold remediation.
06.K.04 Mold Remediation. If the assessment reveals mold remediation is required, then USACHPPM TG 277, Army Facilities Management Information Document on Mold Remediation Issues and any local, state, or host nation guidelines or regulations shall be used.

a. A remediation plan shall be written by a qualified mold expert and shall include: location and extent of the mold, description of conditions found (i.e. wet or dry), type of materials or 'substrate' that the mold is growing on, whether the substrate can be cleaned or must be removed, source or problem which created the mold, repair of building structure or component that is the source, and whether the mold contaminated area can be isolated from the remainder of the building and or its occupants. The plan shall also include, at a minimum, an AHA describing the steps involved in remediation, identified hazards, recommended controls, equipment and materials (i.e., fungicide or bleach used for removal), inspection requirements and training requirements.

b. Mold remediation should not be performed by the same entity that performed the evaluation.

c. Employees in the immediate area of the mold remediation shall be informed of the remediation, results of any testing, and symptoms of the hazard.

d. Post remediation air sampling shall be done in the immediate area and in any areas in the mold spore or vegetative air-pathway. Mold in areas above drop ceilings with combined air plenums shall have air samples taken within the plenum as well as in air-serviced areas. Air samples should be taken in the immediate area of remediation and analyzed by a laboratory in the AIHA Environmental Microbiology Laboratory Accreditation Program.
06.L Control of Chromium (VI) Exposure

06.L.01 General. All activities which could generate chromium (VI) fumes, mists, or dusts shall be evaluated by an IH or SP to determine potential personnel exposure over the OSHA chromium (VI) standards. Typical operations where chromium exposures are high include: Portland cement greater than 20 parts per million (ppm) chromium, cutting or breaking up of cement surfaces, painting or paint removal operations, heating or welding on stainless steel, cutting or breaking up wood treated with preservatives, and handling or applying anti-corrosive substances or coatings.

a. The evaluation may be objective or air sampling as described in CFR 1910.1026.

b. The evaluation shall be added as an appendix to the APP and AHA.

06.L.02 To prevent exposure to Chromium (VI), the use of paints with chromium pigments, Portland cement with greater than 20 ppm chromium, or chromium/arsenic treated lumber shall be avoided when possible. Should chromium (VI) containing products be required, a justification and similar non-chromium (VI) product evaluation shall be conducted and submitted for review by the GDA.

06.L.03 If chromium containing compounds are used and the objective determination is inconclusive, before air sampling confirms the level of exposure, the employer shall comply with the requirements of 1910.1026, 1915.1026, or 1926.1126, whichever is applicable. At a minimum, employers shall provide appropriate PPE, respirators, washing facilities, and a lunch room/area clean from chromium dust and/or fume.

06.L.04 If air sampling confirms chromium (VI) exposure over the OEL, and there is no adequate substitute or work practice change (i.e., use of argon instead of carbon dioxide when arc welding), then the employer shall provide appropriate engineering controls.
i.e., local HEPA filtered ventilation systems, medical surveillance, and air sampling as required by the applicable chromium (VI) standard. If adequate engineering controls are not feasible or appropriate due to the length of the task, then PPE shall be provided.

06.M CRYS TALLINE SILICA

06.M.01 Occupational Standards

a. Employee airborne exposure to crystalline silica shall not exceed the 8-hour TWA limit as specified by the ACGIH in their "Threshold Limit Values and Biological Exposure Indices" or by OSHA, whichever is more stringent. Table 6-3 provides U.S. guidelines and limits for occupational exposure to crystalline silica established by NIOSH, OSHA, MSHA, and ACGIH as of the date of this manual.

b. Mandatory requirements.

(1) Employee exposure shall be eliminated through the implementation of feasible engineering controls.

(2) After all such controls are implemented and they do not control to the OEL, each employer must rotate its employees to the extent possible in order to reduce exposure.

(3) When all engineering or administrative controls have been implemented, and the level of respirable silica still exceeds OEL, an employer rely on a respirator program pursuant to the mandatory requirements of Section 5 E. and 29 CFR 1910.134.

06.M.02 Monitoring.

a. Each employer who has a place of employment in which silica is occupationally produced, reacted, released, transported, stored, handled, or used shall inspect each workplace and work operation to determine if any employee may be exposed to silica at or above the OEL. This evaluation
shall be documented in the AHA for the job/task to be completed.

b. Air monitoring and analysis. Sampling and analytical methods shall be in accordance with those specified in Section 6A.
TABLE 6-6

U.S. GUIDELINES AND LIMITS FOR OCCUPATIONAL EXPOSURE TO CRYSTALLINE SILICA

<table>
<thead>
<tr>
<th>Reference</th>
<th>Substance</th>
<th>Guideline or limit (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIOSH</td>
<td>Crystalline silica: quartz, cristobalite, and tridymite as respirable dust</td>
<td>REL = 0.05 (for up to 10-hr workday during a 40-hr workweek)</td>
</tr>
<tr>
<td>OSHA [29 CFR 1910.1000, Table Z-3]</td>
<td>Respirable crystalline silica, quartz</td>
<td>PEL = 10 / %quartz+2 (8-hr TWA)</td>
</tr>
<tr>
<td>OSHA [29 CFR 1910.1000, Table Z-3]</td>
<td>Respirable crystalline silica, cristobalite</td>
<td>PEL = half the value calculated from the formula for quartz</td>
</tr>
<tr>
<td>MSHA [30 CFR 56, 57, 70, 71]</td>
<td>Respirable quartz in underground and surface metal and nonmetal mines</td>
<td>PEL = 10 / %quartz+2 (8-hr TWA)</td>
</tr>
<tr>
<td>MSHA [30 CFR 56, 57, 70, 71]</td>
<td>Respirable crystalline silica present in concentrations greater than 5% in surface and underground coal mines</td>
<td>RDS = 10 / %quartz (8-hr TWA)</td>
</tr>
<tr>
<td>ACGIH [20062]</td>
<td>Respirable crystalline silica, quartz</td>
<td>TLV = 0.025 (8-hr TWA)</td>
</tr>
<tr>
<td>ACGIH [20062]</td>
<td>Respirable crystalline silica, cristobalite</td>
<td>TLV = 0.025 (8-hr TWA)</td>
</tr>
</tbody>
</table>

REL = Recommended Exposure Limit - NIOSH
PEL = Permissible Exposure Limit - OSHA
RDS = Respirable Dust Standard - MSHA
TLV = Threshold Limit Value - ACGIH
06.M.03 Medical Surveillance. Each employer shall institute a medical surveillance program for all employees who are exposed to airborne concentrations of silica above the OEL. The employer shall provide each employee a medical examination performed by or under the supervision of a licensed physician and shall provide the examination during the employee's normal working hours without cost to the employee. The content of the medical exam shall be determined by the physician based on the exposure records of the employee and guidance provided by NIOSH Standard DHS pub. No 92-102 Aug 1992 or OSHA Instruction CPL 2-2.7 Oct 30, 1972.

a. Medical examinations shall also be made available:

(1) At least annually for each employee exposed to airborne concentrations of silica above the OEL at any time during the preceding 6 months; and

(2) Upon notification by the employee that the employee has developed signs or symptoms commonly associated with chronic exposure to silica.

b. Where medical examinations are performed, the employer shall provide the examining physician with the following information:

(1) The reason for the medical examination requested;

(2) A description of the affected employee's duties as they relate to the employee's exposure;

(3) A description of any PPE used or to be used;

(4) The results of the employee's exposure measurements, if available; and
(5) Upon request of the physician, information concerning previous medical examination of the affected employee.

c. Physician's written opinion. The employer shall obtain and furnish the employee with a written opinion from the examining physician containing the following:

(1) The signs or symptoms of silica exposure manifested by the employee, if any;

(2) A report on the findings of any medical tests completed.

(3) The physician's opinion as to whether the employee has any detected medical condition that would place the employee at increased risk of material impairment to the employee's health from exposure to silica or would directly or indirectly aggravate any detected medical condition;

(4) Any recommended limitation upon the employee's exposure to silica or the use of PPE; and

(5) A statement that the employee has been informed by the physician of any medical condition that requires further examination or treatment.

06.M.04 Training. Each employee who may be potentially exposed to silica shall be instructed at the beginning of his/her employment or assignment of potential silica exposure in the following:

a. Relevant symptoms; appropriate emergency procedures; and proper conditions and precautions for safe use or exposure;

b. To advise the employer of the development of the signs and symptoms of prolonged exposure to silica;

c. Specific nature of operations that could result in exposure to silica above the OEL, as well as safe work practices for the
release of the silica and the types and function of engineering controls;

d. Proper housekeeping practices;

e. The purpose, proper use, and limitations of respirators;

f. A description of, and explain the purposes for, the medical surveillance program; and

g. The increased risk of impaired health due to the combination of smoking and silica dust exposure.

06.M.05 Respiratory Protection.

a. When the exposure limits to silica cannot be met by limiting the concentrations of silica in the work environment by engineering and administrative controls, an employer must use a respiratory protection program meeting the requirements of 29 CFR 1910.134 and Section 5.G. A respirator specified for use in higher concentrations of airborne silica may be used in atmospheres of lower concentrations.

b. Properly fitted particulate-filter respirators may be used for short, intermittent, or occasional dust exposures such as cleanup, dumping of dust collectors, or unloading shipments of sand at a receiving point when it is not feasible to control the dust by enclosure, exhaust ventilation, wetting, or other means.

06.M.06 Protective Clothing. Where exposure to airborne silica or other substances is above the OEL, work clothing shall be HEPA vacuumed before removal unless it is wet. Clothes shall not be cleaned by blowing or shaking.

06.M.07 Housekeeping.

a. To prevent the dispersal of silica dust, all exposed surfaces shall be maintained free of accumulation of silica dust.
b. Dry sweeping and the use of compressed air for the cleaning of floors and other surfaces shall be prohibited. If vacuuming is used the exhaust air shall be HEPA filtered to prevent generation of airborne respirable silica concentrations. Gentle washdown of surfaces is preferred.

c. Emphasis shall be placed upon preventive maintenance and repair of equipment, proper storage of dust producing materials, and collection of dusts containing silica. Sanitation shall meet the requirements of 29 CFR 1910.141.

06.M.08 Personal Hygiene Facilities and Practices.

a. All food, beverages, tobacco products, nonfood chewing products, and unapplied cosmetics shall be discouraged in work areas.

b. Employers shall provide adequate washing facilities to include water and soap.

06.M.09 Engineering Controls.

a. Dust suppression. Moisture, mists, fogs, etc., shall be added where such addition can substantially reduce the exposure to airborne respirable silica dust.

b. Ventilation. Where a local exhaust ventilation and collection system is used in a building, it shall be designed and maintained to prevent the accumulation or recirculation of airborne silica dust into the workplace. The system shall be inspected periodically. Adequate measures shall be taken to ensure that any discharge will not produce health hazards to the outside environment.

c. Additional control measures. When mobile equipment is operated in areas of potential silica exposure, engineering controls shall be provided to protect the operator from such exposure.
06.M.10 Itinerant Work. When employees are exposed to airborne silica at temporary work sites away from the primary worksite, emphasis shall be placed on respiratory protection, protective clothing, portable engineering controls, and provisions for personal hygiene and sanitation. Training of employees shall be provided to protect them as well as others from airborne silica dust exposure.